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Abstract— Imitation learning suffers from causal confusion.
This phenomenon occurs when learned policies attend to
features that do not causally influence the expert actions but are
instead spuriously correlated. Causally confused agents produce
low open-loop supervised loss but poor closed-loop performance
upon deployment. We consider the problem of masking ob-
served confounders in a disentangled representation of the
observation space. Our novel masking algorithm leverages the
usual ability to intervene in the initial system state, avoiding any
requirement involving expert querying, expert reward functions,
or causal graph specification. Under certain assumptions, we
theoretically prove that this algorithm is conservative in the
sense that it does not incorrectly mask observations that
causally influence the expert; furthermore, intervening on the
initial state serves to strictly reduce excess conservatism. The
masking algorithm is applied to behavioral cloning for two
illustrative control systems: CartPole and Reacher.

I. INTRODUCTION

Imitation learning aims to train an intelligent agent to
mimic expert demonstrations for a particular task. Various
imitation learning instantiations, such as behavior cloning and
inverse reinforcement learning, have been widely applied to
fields including robotics [1, 2], autonomous driving [3, 4], and
optimal navigation [5, 6]. Imitation learning enables agents
to learn from high-quality samples instead of exploring from
scratch, leading to significantly higher learning efficiency
when compared with reinforcement learning methods [7].
This is especially important in safety-critical settings where
reinforcement learning are difficult to execute [8, 9]. Even
when the flexibility of reinforcement learning is desired,
imitation learning can be used to accelerate the learning
process [10].

Despite its broad applicability, imitation learning exhibits
an issue known as causal confusion [11]: the learned policy
misattributes features which are primarily correlated with
expert actions as reflecting a causal relationship [12]. This
can manifest itself both through the observed features which
are spuriously correlated with the expert actions (“nuisance
variables”) as well as confounders which are available to the
expert but not the imitator (“unobserved confounders”). We
restrict ourselves to the former, although for completeness
we include approaches addressing the latter in our work.

Consider an illustrative example of causal confusion
adapted from [11]. The task at hand is learning to drive
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a car from expert demonstrations. A behavior cloning agent
is provided video observations from the driver’s point of view,
including a brake light on the vehicle dashboard. Although the
learned braking policy is excellent on the supervised dataset,
upon deployment agent performance suffers: the agent has
effectively learned the trivial policy of braking when the
brake light is on, instead of attending to other pedestrians or
vehicles. In this case, the brake light is a “nuisance variable,”
and we can dramatically improve the performance of the
policy by covering the brake light and reducing information
for the model.

Existing approaches for completely masking such nuisance
variables generally require either a queryable expert or access
to the expert reward function. The seminal work of [11]
introduced a β-VAE decomposition the observation space
along with a joint policy parameterized by hypothetical causal
structures. The space of causal structures can then be searched
with two distinct algorithms, one leveraging expert queries
and the other based on policy evaluations and reward feedback.
The existence of nuisance variables was also noted [13] as
part of a broader issue with sequential models that can be
addressed with Dagger-style expert queries [14]. The work
of [15] partially addresses the nuisance variable problem
by regularizing the learned policies to attend to multiple
objects in the scene. While this approach does not require
policy executions, it only weakens the learner’s attention to
a nuisance variable and does not eliminate it completely.

The complementary problem of unobserved confounders
considers the setting where experts observe confounding
variables that are inaccessible to the learner. In the car
driving example, this might include a human driver listening
to honking that is not detected with visual sensors. One
exciting theoretical line of research in this area [16, 17]
presents causal-model derived conditions for imitability and
an algorithm for imitating the expert policy when possible.
However, these works make the strong assumption that the
causal graph is provided to the imitation learning agent. Other
efforts to apply causal inference techniques to the unobserved
confounder problem either require strong assumptions, such as
the knowledge of the expert reward [18] and purely additive
temporally correlated noise [19], or only evaluate simple
multi-armed bandit problems [20].

This work focuses on the problem of observed nuisance
variables. Our approach, presented in Section III leverages
initial state interventions to identify and completely mask
causally confusing features without relying on expert queries
or policy interventions. We provide conservativeness guar-
antees for our method in Section IV and present illustrate
experiments in Section V.
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II. NOTATION AND BACKGROUND

We denote the set of real numbers by R and the set of
natural numbers by N. The set {1, . . . , a} ⊂ N is denoted
by [a] for a ∈ N, and similarly a, . . . , b ⊂ N is denoted by
[a .. b]. For a pair of boolean variables x and y, the notation
∧ denotes the “and” operator while ∨ denotes “or.” For a set
of boolean variables {x1, x2, . . . , xn}, the notations

∧n
i=1 xi

and
∨n
i=1 xi denote x1 ∧ x2 ∧ . . . ∧ xn and x1 ∨ x2 ∨ . . . ∨

xn, respectively. The logical negation of a boolean variable
or vector x is denoted by ¬x. We denote the identically
zero function on a domain by 0, and we write f(·) 6≡ 0 to
mean that f(·) is not equivalent to the zero function over its
argument—i.e., there exists an input where f is nonzero.

A. Measure theory and probability

For a random variable X , we introduce the notation P (x)
to represent a probability measure over the values x in the
domain of X . The uniform measure over an interval [a, b] ⊂ R
is denoted by U(a, b). For two measures µ and ν, we say
that ν is absolutely continuous with respect to µ if for every
µ-measurable set A, µ(A) = 0 implies ν(A) = 0. If ν
is absolutely continuous with respect to µ, we let dν/dµ
denote the Radon-Nikodym derivative of ν with respect to
µ. Note that dν/dµ is a nonnegative function. The standard
Lebesgue measure on R is denoted λ. For a measure µ which
is absolutely continuous with respect to λ, we define its L1

norm in the typical manner

‖µ‖1 :=

∫ ∣∣∣∣
dµ

dλ

∣∣∣∣dλ,

which we take to be the default norm in the Banach space
of measures on R. We denote independence between two
random variables using ⊥⊥ and its negation by 6⊥⊥.

B. Causal graphs and structural causal models

We denote a directed acyclic graph by G, with the presence
of a direct edge between nodes X and Y denoted X → Y .
For a given node X in G, we let GX denote the graph obtained
by deleting outgoing edges from X . We denote sets of nodes
in a graph using bold font (e.g., Z). The set of parents of
a node X in a graph is denoted by paX . A path between
two nodes X and Y can consist of arbitrarily directed edges
and is said to be “blocked” by a set of nodes Z if the path
contains a chain I → M → J or a fork I ← M → J with
M ∈ Z or a collider I → M ← J such that M 6∈ Z and
no descendent of M is in Z [21]. Two nodes X and Y are
said to be d-separated by Z if Z blocks every path between
X and Y . We call a path with all edges oriented the same
direction a directed path.

We leverage Pearl’s structural causal model (SCM) formal-
ism [21]. An SCM M = 〈V,U,F〉 consists of endogenous
variables V, exogenous variables U, and structural equations
F . Each V ∈ V is considered to be a node in the causal graph
G with one associated exogenous variable UV ∈ U which is
independently distributed. The structural equations fV ∈ F
assign values of a particular node V ∈ V as a function
V := fV (paV , UV ) of its parents and associated exogenous

variable. The SCMM induces a joint distribution P
(
v
)

over
the endogenous variables V. We say that an SCM M is
faithful to its causal graph G if the distribution P

(
v
)

induced
by M contains only the pairwise conditional independencies
implied by G; i.e. X ⊥⊥ Y | Z in the joint distribution from
M iff X and Y are d-separated by Z in G [22]. As a notable
special case, if Z is empty and there exists a path from X
to Y with no colliders then X 6⊥⊥ Y .

We define an intervention on a particular node V to be a
reassignment of the associated structural equation fV . This
intervention can take the form of a constant intervention
V := v, which we denote by do(V = v) for a constant v
and may abbreviate to do(v). We also define a distributional
intervention, denoted by do(V ∼ P̃ (v)), where we assign V
to be drawn from a specified distribution P̃ (v). We denote
the post-intervention SCM by M̃, with an associated causal
graph G̃ identical to G but with incoming edges to V removed.
Note that reassigning the associated structural equation for
any particular node V induces a new distribution generated
by M̃ over the set of all endogenous variables V, which
we denote by P (v | do(V = v)) or P (v | do(V ∼ P̃ (v))).
We may abbreviate a constant intervention do(V = v) as
simply do(v), where it is clear that v is associated with the
uppercase V .

C. Imitation learning

The goal of imitation learning is to learn an agent that
replicates some expert behavior. We specifically focus on
behavior cloning, which uses collected expert trajectories from
random initializations to train an imitating policy. Precise
details are formalized in the remainder of this section.

For the system of interest, we use dS , dI , dO, and dA to
denote the dimensionality of the bounded state space S ⊆
RdS , raw image observation space I ⊆ RdI , disentangled
observation space O ⊆ RdO , and action space A ⊆ RdA . Let
St, It, Ot, and At be vector random variables taking on values
in S , I , O, and A, respectively, for a discrete time step t ∈ N.
States variables St represent the intrinsic low-dimensional
dynamics of the system (e.g. simulator variables) while
observations Ot are distilled using a β-VAE style framework
from high-dimensional image measurements It, with typically
dI � dO—although we specify images for concreteness, our
approach generalizes to any high-dimensional observation
space with a low-dimensional disentangled structure. The
system dynamics follow the typical assumption that St+1 is
strictly a function of St and At, excluding It and Ot, with
initial time step t = 1.

The imitation learning agent is executed using only the
observed images It and not the full state St, although we
assume state variables are available for the training dataset.
This naturally models a typical sim-to-real transfer scenario
or the setting where a training-time sensor suite is reduced
at test time due to budget constraints. Note that although we
assume the input to our imitation learning policies lies in the
high-dimensional images space I , in our approach the policy
first applies a β-VAE style compression on an input image
to mask in the latent space of disentangled observations Ot.
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Fig. 1: An example (unknown) system causal graph Gs. We
hope to mask O1 (e.g. brake light observation), which has
no causal edge to any expert action but is correlated with
A1 through the confounding random “seed” W1 and future
spurious correlations. In Gs, W1 also causally influences S2

1 ;
however, if we intervene on S1 (blue) this edge is removed
in G̃s (light shading). This enables our masking algorithm to
more reliably leverage state initialization to detect potential
causes between observations and actions (Section III-B).

Lower-case script letters s ∈ [dS ], o ∈ [dO], and a ∈ [dA]
denote specific indices in the state, observation, and action
vectors. For example, Ss

1 refers to the real-valued random
variable corresponding to the sth state variable at the first
time step. We let Wt denote the concatenation of all states,
observations, and actions up to but not including the tth time
step:

Wt = [S1, . . . , St−1, O1, . . . , Ot−1, A1, . . . , At−1] ∪W1,

where we model W1 ∼ U(a, b) to be an unobserved variable
capturing initialization stochasticity which is outside of our
control (i.e. a random “seed”).

The collection of states, observations, and actions, along
with W1, can be considered exogenous variables in an SCM
defining our system. We denote the system SCM by Ms and
denote the corresponding faithful causal graph by Gs. Note
that the SCM depends on the choice of policy. Since we aim
to infer causalities regarding the expert policy, we generally
let any causal relationships be relative to the Ms and Gs
induced by the expert policy. We denote our system SCM to
be the tuple 〈Ms,Gs〉. Although nodes in Gs are individual
elements in our vector-valued random variables (i.e., Ss

t is a
node, not St), with some abuse of notation, we let the edge
symbol St → X signify that Ss

t → X for some s ∈ [dS ].
Similarly, X → St denotes that X → Ss

t for some s.
This work evaluates the importance of intervening on the

initial state to assign it to a particular distribution S1 ∼

P̃ (s1). This intervention yields a modified SCM M̃s with
a corresponding (not necessarily faithful) causal graph G̃s,
which removes the edge W1 → S1 in Gs (Figure 1). We
collect N arbitrary-length expert rollout trajectories of states,
observations, and actions from M̃s. The collection of all such
trajectories is denoted (1..N)τ . Among these N trajectories,
the ith trajectory consists of the tuple

iτ = 〈s1, . . . , sT ; I1, . . . , IT ; o1, . . . , oT ; a1, . . . , aT 〉,

where T is the length of this trajectory, and the lowercase
letter corresponding to a random variable represents the
concrete value (to avoid confusion with indices, for raw
image observations, we use It to denote a value of It). Note
that implicit in this characterization of a trajectory is the
existence of an encoder ψe : I → O mapping each image
It to a disentangled observation ot. While we characterize
trajectories as containing both images and disentangled
observations to simplify the exposition, in practice, the real-
world or the simulator data collection process only provides
the images It, and the extraction of disentangled observations
ot is internal to methods that benefit from this representation.
As our masking algorithm operates strictly on disentangled
representations, we remove from focus the raw images It

unless discussing the policy training.
When training imitation learning agents on (1..N)τ , we

parameterize policies as a neural network fθ : IL → A. The
neural policy maps some history of observations to the an
action at via the calculation

at = fθ(It, It−1, . . . , It−L+1). (1)

We then train fθ via standard behavior cloning by randomly
sampling batches of images and expert actions from (1..N)τ
and performing supervised regression.

D. Statistical independence tests

Our method relies on identifying whether two ran-
dom variables are statistically dependent. While this is a
challenging problem with a rich literature [23], in this
paper, we only briefly introduce a well-known indepen-
dence test for continuous distributions based on Hoeffd-
ing’s D statistic [24, 25]. Consider two real-valued random
variables X and Y with a joint cumulative distribution
function F (x, y) = P

(
X ≤ x, Y ≤ y

)
. Hoeffding’s D statis-

tic operates on NHoeff independent pairs of observations
{(X1, Y1), . . . (XNHoeff , YNHoeff)} and outputs a real number
D in the range [−0.5, 1], with D > 0 indicating depen-
dence. The computational complexity of calculating this
statistic is O(NHoeff logNHoeff). For absolutely continuous
joint distributions, the D statistic is unbiased and consistent
as NHoeff → ∞, meaning that the dependence is correctly
represented with probability arbitrarily close to 1. Subsequent
variations of the D statistic maintain consistency even for
non-absolutely continuous joint distributions [26], although
these complications are outside the scope of our work. We
refer to the independence test based on the Hoeffding’s D
statistic as Hoeffding’s independence test.



We invoke Hoeffding’s independence test over a dataset of
trajectories (1..N)τ , extracting exactly one pair of variables
from each trajectory (NHoeff = N ). For concreteness, consider
the call HOEFFDING(S2

1 6⊥⊥ A4
3 in (1..N)τ ). This extracts,

from each trajectory, the second element of the t = 1 state
and the fourth element of the t = 3 action. These N pairs
are then supplied to Hoeffding’s test, which returns a real
number in the range [−0.5, 1].

III. PROBLEM STATEMENT AND METHOD

We address the causal confusion problem in imitation
learning and aim to mask spuriously correlated observations.
To this end, we investigate the following problem statement:

How can we identify and eliminate spuriously correlated
observations without relying on online expert queries or

knowledge of the expert reward function?

Our approach addresses this problem in a theoretically-
grounded way. Specifically, we make the following contribu-
tions:

1) We present an algorithm for identifying and masking
causally confusing observations without relying on
reward function knowledge, expert queries, or causal
graph knowledge.

2) We prove that, under certain conditions, our procedure
is conservative: if an observation causally affects the
expert actions, it will not be masked.

3) We demonstrate the importance of initial state inter-
ventions by showing theoretically that the interventions
reduce excess conservatism in the masking algorithm.

Section III-A presents and analyzes the assumptions
underlying our method. Section III-B motivates and derives
our method, which is then presented formally in Section III-C.

A. Assumptions

Our proposed method relies on the following assumptions
to ensure the theoretical guarantees in Section IV.

Assumption 1. The system causal graph Gs is time invariant.
Namely, consider two arbitrary time steps t, t′ ∈ N with t′ ≥ t
and two arbitrary time-indexed variables Xt and Yt′ in Gs.
Then if Xt → Yt′ is an edge in Gs, then so is Xt+∆ → Yt′+∆

for any ∆ ∈ Z such that min(t+ ∆, t′ + ∆) ≥ 1.

Time-invariance of the expert policy allows for causal
inference via interventions on the initial state S1. Otherwise
we would require the ability to intervene at arbitrary time
steps, which is unrealistic for most real-world systems.

Assumption 2. The expert policy attends only to observa-
tional information derived from the underlying state. Namely,
if Oo

t → Aa
t′ in Gs for t, t′ ∈ N with t′ ≥ t, then there must

exist an index s such that Ss
t → Oo

t .

Assumption 2 reflects the intuition that the expert policy
itself must not be fooled by spurious information in the
observation space. This is a natural assumption in the
considered case where the dynamics of the underlying system
depend only on St, not Ot.

Assumption 3. The expert policy reacts to observations
within a reaction horizon H ∈ N. Specifically, if Oo

t → Aa
t1

in Gs for some t1 > t and particular t ∈ N, o ∈ [dO], and
a ∈ [dA], then there exists a t2 ∈ [t .. t+H − 1] such that
Oo
t → Aa

t2 .

Assumption 3 imposes a horizon within which the expert
is assumed to react to a hypothetical intervention on a state or
observation. For finite-length trajectories, H can be chosen to
be the entire trajectory length, with the algorithm and theory
still valid. As such, H introduces a hyperparameter that allows
for more tractable computation under some assumptions
on the expert. Our experiments show that H can be much
smaller than the trajectory length for certain practical dynamic
systems and experts.

Finally, we formalize a class of SCMs that behave nicely
under interventions.

Assumption 4. The system SCM Ms = 〈V,U,F〉 is
interventionally absolutely continuous, meaning that for any
disjoint sets of nodes X and Y, the interventional distribution
P
(
y | do(X = x)

)
is absolutely continuous with respect to

the Lebesgue measure and has a bounded Radon-Nikodym
derivative.

Assumption 4 stipulates that the probability distribution
induced by our SCM on any set of non-intervened nodes is
absolutely continuous with bounded density. This is a tech-
nical condition that allows us to assert that Hoeffding’s test
is consistent. We note that subsequent D-statistic variations
allow for non-absolutely continuous joint distributions [26]
— we leave the theoretical and practical implications of more
sophisticated testing to future work.

B. Derivation

Our aim is to mask a particular observation Oo across
all time steps if it has no causal effect on any expert action
within the reaction horizon. As intervening on observations
is impractical, this causality is challenging to deduce. We do,
however, assume the ability to intervene on the system in one
specific instance: setting the state variables S1 at initialization.
We manipulate S1 to infer the possible existence of a true
causal relationship.

We first motivate our approach from an arbitrary time
step t ≥ 2 before specializing on the initialization. Consider
arbitrary observation and action indices o ∈ [dO],a ∈ [dA]
and time steps t, t′ ∈ N with t′ ∈ [t .. t+H−1]. Assumption 2
states that a causal effect Oo

t → Aa
t′ must arise from a larger

causal path

Ss
t → Oo

t → Aa
t′ (2)

in Gs, for some state variable index s ∈ [dS ]. We now observe
that by faithfulness of 〈Ms,Gs〉 it must be that Ss

t 6⊥⊥ Oo
t

and Ss
t 6⊥⊥ Aa

t′ ; i.e. the causal relationships in Gs imply
probabilistic dependencies in the induced distribution from
Ms. Note that these are statistical statements which can
be ascertained from the observational data. We define the



boolean variable (t,t′)Do
s,a to check these independencies:

(t,t′)Do
s,a := (Ss

t 6⊥⊥ Oo
t ) ∧ (Ss

t 6⊥⊥ Aa
t′ ), (3)

and introduce the “potential cause” notation

Oo
t 99K Aa

t′ :=

dS∨

s=1

(
(t,t′)Do

s,a

)
. (4)

The boolean-valued statement Oo
t 99K Aa

t′ intuitively
captures that, based on observational data, there may (but
need not) exist a true causal edge Oo

t → Aa
t′ generated by

some Ss
t as in (2). We denote by Oo

t 699K Aa
t′ the logical

negation of Oo
t 99K Aa

t′ . As we will elaborate in more detail
shortly, if Oo

t 699K Aa
t′ for all actions a ∈ [dA] and t′ in

the reaction horizon, we want to “mask” the oth observation
as it has no causal effect on the expert action but could be
spuriously correlated in a way that undermines the imitation
learning policy performance.

It is immediate from the above faithfulness argument that
for t ≥ 2, we have the implication

Oo
t → Aa

t′ =⇒ Oo
t 99K Aa

t′ . (5)

Note that (5) provides a conservativeness guarantee: if
an observation causally influences an action, we will not
mistakenly conclude from observational data that it does not,
and hence incorrectly mask an observation that is actually
used by the expert policy. However, this conservativeness
is not apparent for t = 1 in the modified causal model
〈M̃s, G̃s〉, where we intervene to specify the initial state
distribution, overriding the natural randomness resulting from
W1 and potentially breaking the faithfulness. As a simple
counterexample, initializing S1 to a constant vector would
make Ss

1 independent of every other random variable in
the causal graph, and therefore no potential causes could
be discovered as (3) would always be false. Nonetheless,
when a sufficiently sensible initialization distribution is used,
we prove that the conservativeness result still holds under
intervention on S1 in Section IV.

The reverse implication to (5) does not hold. It is possible
that spurious statistical relationships exist while a causal
edge Oo

t → Aa
t′ does not. Indeed, for t ≥ 2, the abundance

of chronologically antecedent variables virtually guarantees
that all variables have share a common cause and hence a
statistical dependence. The sole exception is the initial state
S1. By intervening on S1, we eliminate the incoming edge
from the only possible common ancestor W1 in the causal
graph (Figure 1). Therefore, we expect that this interventional
ability should help eliminate potential causes Oo

1 99K Aa
t′

which do not exist in the true causal graph and reduce
excessive conservativeness in the algorithm. We analyze this
idea formally in Section IV.

The culmination of our efforts is described in Algorithm 1,
which checks for potential causes, as defined in (4), at
t = 1 using expert data (1..N)τ collected from the inter-
ventional system 〈M̃s, G̃s〉. Note that Algorithm 1 invokes
the HOEFFDING routine to compute Hoeffding’s D statistic
for independence between two variables (see Section II-D).

The test returns a real number in the range [−0.5, 1], with a
value greater than zero indicating dependence. Since perfect
observational disentanglement is unrealistic, we introduce a
threshold hyperparameter γ, which we set to 0.001 for the
experiments.

Algorithm 1 is presented to maximize readability and can
be implemented more efficiently. Namely, the Hoeffding tests
between Ss

t and Oo
t , A

a
t′ can be precomputed, yielding the

runtime
O (dS(dO +HdA)N logN) ,

where N logN is the cost of evaluating Hoeffding’s test for
a specific pair of variables over N trajectories. In practice,
Hoeffding’s test executions are very fast—on the order of
milliseconds for N = 103—and incur a negligible overhead
compared with the training time of imitation learning.
Remark 1. The reader may have noticed that our approach
bears a resemblance to instrumental variable regression, a
statistical technique for estimating causal relationships that
has also received some attention in the causal imitation
learning literature [19]. We emphasize that Ss

t does not
constitute a valid instrumental variable in the causal path
(2) as there may be many other paths between Ss

t and Aa
t′

which are not mediated by Oo
t . Thus while the spirit of our

approach is related to instrumental variable regression, we
cannot use Ss

t to precisely determine a causal relationship
between Oo

t and Aa
t′ and only use Ss

t to provide evidence
of a potential cause.

C. Imitation Learning Workflow

Drawing on the masking approach developed in Section III-
B, we summarize our overall deconfounded imitation learning
workflow as the following four steps.

1) Collect random-policy trajectories to learn a disentan-
gled observation representation using a β-VAE, denoted
by ψd ◦ ψe : I → I, with an encoder ψe : I → O
and decoder ψd : O → I. For a well-trained β-VAE,
ψd ◦ ψe approximates the identity.

2) Collect a sequence of N trajectories (1..N)τ from the
expert policy, with the starting state distribution P̃ (s1)
over S having any density that is everywhere nonzero
(e.g. uniform).

3) Execute Algorithm 1 on (1..N)τ to obtain the obser-
vation mask m̃ ∈ {0, 1}dO , where m̃o = 1 if the oth

observation is to be masked.
4) Train the final policy gθ : IL → A on (1..N)τ using

standard supervised learning; gθ masks the disentangled
observation space using m̃ before executing a learnable
policy network fθ:

gθ(It, . . . , It−L+1) = fθ(ψ̃(It), . . . , ψ̃(It−L+1)),

where the masked β-VAE ψ̃ : I → I has its weights
fixed and is defined as

ψ̃(I) = ψd(¬m̃� ψe(I)).

Note that this overall structure generally follows the
seminal work of [11]. Our key contribution is Algorithm 1,



which provides a mask for the disentangled observations
without relying on expert queries, the expert reward function,
or specification of the causal graph. A visualization of
Algorithm 1 is provided in Figure 2 for the CartPole system
considered in the experiments. We show in Section IV that
Algorithm 1 enjoys notable theoretical guarantees.

Algorithm 1 Masking algorithm
Hyperparameter γ > 0.
procedure MASK((1..N)τ )

Initialize m̃ ∈ {0, 1}dO to be an all-zero vector.
for o = 1, . . . , dO do

Mask the oth observation according to
m̃o ←

(
Oo

1 699K Aa
t′ ∀a ∈ [dA], ∀t′ ∈ [H]

)
, (6)

computing Oo
1 699K Aa

t′ using CHECK.
return m̃

procedure CHECK{Oo
t 99K Aa

t′}((1..N)τ )
for s = 1, . . . , dS do

a← HOEFFDING(Ss
t 6⊥⊥ Oo

t in (1..N)τ ) > γ
b← HOEFFDING(Ss

t 6⊥⊥ Aa
t′ in (1..N)τ ) > γ

if a ∧ b then
return True

return False

IV. THEORETICAL GUARANTEES

In this section, we delve into the theoretical properties of
Algorithm 1. Theorem 1 demonstrates that if we intervene
on the initial state S1 and meet certain conditions in the
infinite-trajectory regime, the algorithm remains conservative,
ensuring that no observation that causally influences the
expert is mistakenly masked. Additionally, Theorem 2 and
Proposition 3 highlight the effectiveness of intervening on S1

in mitigating overconservativeness in the masking algorithm.
Specifically, Theorem 2 asserts that the correctly masked
observations under the original causal model 〈Ms,Gs〉 will
also be masked under the intervened causal model 〈M̃s, G̃s〉.
Proposition 3 showcases a particular set of systems where the
intervention only results in masks under 〈M̃s, G̃s〉, providing
compelling evidence that the masking algorithm is more
effective after intervening on S1.

All subsequent theory relies on Assumptions 1-4, and for
brevity we defer proofs and auxiliary lemmas to the appendix
of the full technical report. We now introduce the main
conservativeness theorem.

Theorem 1. In the faithful system causal model
〈Ms,Gs〉, assume that the measure-valued function
w1 7→ P (v | do(Z = z), w1) is continuous for any set of
nodes Z and V 6∈ Z.

Let there exist a causal edge Oo
t → Aa

t′ in Gs for some
t, t′ ∈ N, t′ ≥ t, and indices o ∈ [dO] and a ∈ [dA]. Then
in the interventional causal model 〈M̃s, G̃s〉 where the initial
state distribution P̃ (s1) has everywhere-nonzero density on S ,
Oo is almost surely not masked by Algorithm 1 for almost all

uniform parameterizations of W1 as the number of trajectories
N →∞; i.e., (6) correctly evaluates to true.

Theorem 1 guarantees that Algorithm 1 maintains conser-
vativeness by correctly preserving unmasked observations that
causally impact expert actions. This outcome is consistent
with the discussion in Section III-B, where we observed that
the faithfulness of 〈Ms,Gs〉 ensures the correctness of the
algorithm when we do not intervene on S1 and allow the
initial state to be naturally generated from W1. Theorem 1
establishes that this property also holds in the interventional
system 〈M̃s, G̃s〉, where we assign S1 ∼ P̃ (s1).

We now theoretically demonstrate the benefits of interven-
ing on P̃ (s1). Specifically, we show that this intervention
reduces the excess conservatism in the masking algorithm by
removing income edges from W1 in the causal graph, thereby
eliminating a potential avenue of confounding.

Theorem 2. Let m denote the potential-cause test evaluated
by Algorithm 1 on the distribution induced by the non-
interventional system 〈Ms,Gs〉, and let m̃ be the original
test on the interventional system 〈M̃s, G̃s〉 where P̃ (s1)
has everywhere-nonzero density on S . Then if mo correctly
evaluates to true for a particular o ∈ [dO], then m̃o also
evaluates to true almost surely as the number of trajectories
N →∞.

Theorem 2 assures us that intervening on P̃ (s1) does not
lead to more conservative masking than the original system.
We now provide a specific class of SCMs for which the
intervention strictly improves the mask.

Proposition 3. Let m̃ and m be as in Theorem 2, and
consider a particular observation index o ∈ [dO] such that
the only incoming edge to Oo

1 is W1 → Oo
1 . Then if in Gs

there exists the fork Ss
1 ←W1 → Oo

1 for some s ∈ [dS ] and
a directed path from Ss

1 to some Aa
t , with t ∈ [H],a ∈ [dA],

m̃o correctly masks the oth observation almost surely as the
number of trajectories N →∞ while mo does not.

V. EXPERIMENTS

We evaluate our approach on two custom simulated envi-
ronments: CartPole and Reacher. Each of these environments
contains a nuisance feature which is likely to induce causal
confusion. Our masking approach can successfully eliminate
these spuriously correlated features. Precise experimental
details are deferred to Appendix II of the full technical report.

A. Environments

Both considered environments are modified to include a
nuisance feature corresponding to the previous action taken
by the expert (analogous to the brake light example). For
each environment, the expert is a standard constrained finite-
time optimal control policy which minimizes cumulative
trajectory loss. This expert reward function is not provided
to the imitation learning agent.

CartPole. This environment consists of a standard planar
cart-pole system with a continuous scalar horizontal force
applied to the cart. A quadratic cost is imposed for deviations
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Fig. 2: Masking algorithm visualization for the CartPole environment with reaction horizon H = 3. Latent space interpolation
of the β-VAE reveals that O1 and O2 capture some combined positional/angular information, while O3 captures the
disentangled confounder (color of the confounding square). This last observation shares virtually no dependence (Hoeffding’s
D statistic less than γ = 10−3) with any state variable due to interventions on S1 (note the log scale). This means that
(1,t′)Do

s,a is false (no cross hatches) for o = 3 and all s ∈ [dS ], regardless of a and t′; i.e. O3
1 699K Aa

t′ for all a ∈ [dA]
and t′ ∈ [H], and we can mask the confounder O3.

from the vertical target state. The spuriously correlated feature
is a colored square in the upper-left corner of each image,
which interpolates between green and red depending on the
most recently executed action.

Reacher. We consider a top-down version of a two-
dimensional two-joint Reacher environment [27]. The en-
vironment penalizes squared distance of the end effector to a
black target dot. The target location is included in the state
vector, thus satisfying Assumption 2. Two torques, one per
joint, are specified as the control inputs; the nuisance feature
is a red dot in the upper-left corner whose horizontal position
and vertical position encode the two control inputs from the
previous time step. This “joystick” introduces a different kind
of nuisance feature than in the CartPole environment.

B. Imitation learning policies

We compare the performance of our masked policy against
that of vanilla behavior cloning. The baseline behavior cloning
policy is denoted by BCVANILLA, and our masked policy
is denoted by MASKED. For reference, we also measure
the performance of the behavior cloning policy with the
confounding signals manually removed by superimposing a
white square on the upper-left corner, denoted BCMANUAL.
We emphasize that BCMANUAL requires human judgement
to manually eliminate spurious confounders; we show that we
can replicate this performance in a principled and automated
way.

C. Discussion

Figure 3 displays our experimental results. Across both
environments, the MASKED policy performs comparably to
the manually masked baseline BCMANUAL. The BCVANILLA
policy incurs a dramatically higher loss than both other
policies on CartPole. This is because BCVANILLA incorrectly
attends to its own actions at the previous time step due to
the introduction of the nuisance feature, leaving it unable
to consistently stabilize the inverted pendulum. It is worth
noting that MASKED comes close to replicating the manually
deconfounded baseline’s performance without requiring expert

queries, access to the expert reward function, or pre-specified
information on the causal graph in the deconfounding
procedure. Note, however, that there is a small gap between
the performance of our method and manual masking, visible
for the Reacher environment. This is likely attributable to
imperfect disentanglement in the β-VAE.

Figure 2 provides a visualization of our masking procedure
and the produced mask for the CartPole environment. While
we use a latent space size of three (the precise number of
independent factors of variation) for visualization purposes,
our masking procedure is fully functional for larger choices
of the latent size. For Reacher, although there are 6 factors
of variation in each image, a larger latent space of 12 yielded
superior disentanglement and reconstruction performance.

D. Limitations

The most significant limitation of our work, besides the ex-
plicitly stated assumptions, is the requirement that confound-
ing factors are observable and can be neatly disentangled.
While this holds for the environments considered in this work,
more complex environments may introduce entanglement
between causally confusing features and important features
to which the expert policy actually attends. We introduce
the Hoeffding threshold hyperparameter γ to mitigate this
concern; however, investigating more principled methods for
handling incomplete disentanglement would be an exciting
area of future work.

VI. CONCLUSION

This work introduces a novel method to address the
causal confusion problem in imitation learning. The proposed
method leverages the typical imitation learning ability to
intervene in the initial system state. Unlike previous works,
our method masks causally confusing observations without
relying on online expert queries, knowledge of the expert
reward function, or specification of the causal graph. Our
theoretical results establish that our masking algorithm is
conservative, with excess conservatism strictly reduced by
interventions on the initial state. We illustrate the effectiveness
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Fig. 3: Evaluation rollout loss on CartPole (a) and Reacher (b) across training epochs. Solid lines denote mean performance
over 5 runs while shaded areas indicate standard deviation. Our MASKED policy approaches the performance of the
manually-deconfounded BCMANUAL baseline, while BCVANILLA struggles due to causally confusing features.

of our method with experiments on the CartPole and Reacher
environments.

REFERENCES
[1] Sylvain Calinon and Aude Billard. “Incremental learning of gestures

by imitation in a humanoid robot”. In: ACM/IEEE International
Conference on Human-Robot Interaction. 2007.

[2] Sanjay Krishnan et al. “SWIRL: A sequential windowed inverse
reinforcement learning algorithm for robot tasks with delayed
rewards”. In: The International Journal of Robotics Research 38
(2018), pp. 126–145.

[3] Tianyu Wang, Vikas Dhiman, and Nikolay A. Atanasov. “Inverse
reinforcement learning for autonomous navigation via differentiable
semantic mapping and planning”. In: arXiv preprint arXiv:2101.00186
(2021).

[4] Alex Kuefler et al. “Imitating driver behavior with generative
adversarial networks”. In: IEEE Intelligent Vehicles Symposium. 2017.

[5] Ahmed Hussein et al. “Deep imitation learning for 3D navigation
tasks”. In: Neural computing and applications 29 (2018), pp. 389–404.

[6] Zhenyu Shou et al. “Optimal passenger-seeking policies on E-hailing
platforms using Markov decision process and imitation learning”. In:
Transportation Research Part C: Emerging Technologies 111 (2020),
pp. 91–113.

[7] Mariusz Bojarski et al. “End to End Learning for Self-Driving Cars”.
In: arXiv preprint arXiv:1604.07316 (2016).

[8] He Yin et al. “Imitation learning with stability and safety guarantees”.
In: IEEE Control Systems Letters 6 (2021), pp. 409–414.

[9] Samuel Pfrommer et al. “Safe reinforcement learning with chance-
constrained model predictive control”. In: Learning for Dynamics
and Control Conference. PMLR. 2022, pp. 291–303.

[10] Todd Hester et al. “Deep Q-learning From Demonstrations”. In: AAAI
Conference on Artificial Intelligence. 2017.

[11] Pim De Haan, Dinesh Jayaraman, and Sergey Levine. “Causal
confusion in imitation learning”. In: Advances in Neural Information
Processing Systems. 2019.

[12] Jean Kaddour et al. “Causal machine learning: A survey and open
problems”. In: arXiv preprint arXiv:2206.15475 (2022).

[13] Pedro A Ortega et al. “Shaking the foundations: delusions in
sequence models for interaction and control”. In: arXiv preprint
arXiv:2110.10819 (2021).
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I PROOFS FOR SECTION IV

Lemma 4. Consider an SCM M with a faithful causal graph G that contains a directed path from X to Y . Then provided
a set Z contains all ancestors of X but none of its descendents, then for any assignment z to Z there exist values x, x′ such
that ∥∥∥P

(
y | do(x), z

)
− P

(
y | do(x′), z

)∥∥∥
1
> 0,

viewed as induced distributions over Y .

Proof: As Z contains no descendents of X , it cannot block the directed path between X and Y and hence the Causal
Markov Condition does not declare X and Y independent. Faithfulness stipulates that X and Y are therefore dependent
given z, so there exists x, x′ such that ∥∥∥P

(
y | x, z

)
− P

(
y | x′, z

)∥∥∥
1
> 0.

The second rule of do calculus states that we can exchange observation and intervention if X and Y are independent
given z in the causal graph GX obtained by removing outgoing edges from X . If we remove outgoing edges from X , the
only remaining paths between X and Y must contain an edge X ← Z for some variable Z. This makes Z an ancestor of X ,
and therefore Z is included in Z, and both paths of the form X ← Z ← J and X ← Z → J are blocked by Z. This means
that X and Y are d-separated by Z in GX , and we can apply the second do-calculus rule to conclude that

P
(
y | do(x), z

)
= P

(
y | x, z

)
,

P
(
y | do(x′), z

)
= P

(
y | x′, z

)
,

and hence ∥∥∥P
(
y | do(x), z

)
− P

(
y | do(x′), z

)∥∥∥
1
> 0.

Lemma 5. Consider a set E ⊆ R where for each x ∈ E, there exists a ball B(x, εx) which contains no point in E. Then E
has measure zero with respect to the standard Lebesgue measure on R.

Proof: As E is a subset of R, it is Lindelöf, and the cover of E by the collection of balls {B(x, εx) | x ∈ E} has a
finite subcover. Enumerate this subcover as Ii; we then have

λ(E) = λ(E ∩ (∪iIi)) ≤
∑

i

λ(E ∩ Ii) = 0,

as each E ∩ Ii contains only a singleton.

Theorem 1. In the faithful system causal model 〈Ms,Gs〉, assume that the measure-valued function
w1 7→ P (v | do(Z = z), w1) is continuous for any set of nodes Z and V 6∈ Z.

Let there exist a causal edge Oo
t → Aa

t′ in Gs for some t, t′ ∈ N, t′ ≥ t, and indices o ∈ [dO] and a ∈ [dA]. Then in the
interventional causal model 〈M̃s, G̃s〉 where the initial state distribution P̃ (s1) has everywhere-nonzero density on S, Oo

is almost surely not masked by Algorithm 1 for almost all uniform parameterizations of W1 as the number of trajectories
N →∞; i.e., (6) correctly evaluates to true.

Proof: By Assumptions 1 and 3, we can WLOG consider t = 1 with t′ ∈ [H]. If Oo
1 → Aa

t′ , by Assumption 2 there
exists an edge Ss

1 → Oo
1 for some s. We now want to show that in the SCM M̃s where we intervene distributionally on S1,

we have that Ss
1 6⊥⊥ Oo

1 and Ss
1 6⊥⊥ Aa

t′ . The arguments are similar, so we will just state the proof for the former.
We want to show that Ss

1 and Oo
1 are not independent in M̃s. Note that in the modified structural assignment for Ss

1 in
M̃s, Ss

1 is distributed with everywhere-nonzero density on S . Therefore checking the desired independence is equivalent to
showing

∥∥∥P
(
oo1 | do(Ss

1 = α)
)
− P

(
oo1 | do(Ss

1 = α′)
)∥∥∥

1
> 0 (7)

as distributions over oo1 for some α, α′ ∈ R with α 6= α′. Here, the do statement captures our ability to intervene on the
initial state, decoupling any potential correlational influence from W1.

By Lemma 4, we have that for any particular value w1 of W1,
∥∥∥P
(
oo1 | do(Ss

1 = α), w1

)
− P

(
oo1 | do(Ss

1 = α′), w1

)∥∥∥
1
> 0,

for some α, α′. This is equivalent to

‖h(α, α′, w1)‖1 6≡ 0 ∀w1, (8)



where we define

h(α, α′, w1) := P
(
oo1 | do(Ss

1 = α), w1

)
− P

(
oo1 | do(Ss

1 = α′), w1

)
,

and 0 denotes an identically zero function over α, α′. Note that h(α, α′, w1) specifies a signed measure over oo1 . Now observe
that

P
(
oo1 | do(Ss

1 = α)
)

=

∫
P
(
oo1 | do(Ss

1 = α), w1

)
p(w1)dµ(w1),

where µ is a probability measure on the unobserved variable w1 which we will instantiate shortly, and p(w1) denotes the
probability density of W1, i.e. the Radon-Nikodym derivative of the measure P (w1). Note that the result of this integral is
still a signed measure over oo1 . So we have that showing our desired inequality (7) is equivalent to showing

∥∥∥
∫
h(α, α′, w1)p(w1)dµ(w1)

∥∥∥
1
6≡ 0

as a function of α, α′ for “almost all” measures µ—as there is no natural measure on the space of measures, we formalize
this assuming a uniform distribution on w1 below. Note that the outer norm computes the L1 norm of a signed measure
over oo1 . For notational convenience, we will now define the concatenation z = [α, α′], with z ∈ R2. Note that we defined
W1 ∼ U(a, b), for real parameters a < b. We can now concretely refine µ in the above statement, using our new z-notation,
to showing that

gba(z) :=
∥∥∥
∫ b

a

h(z, w1)dw1

∥∥∥
1
6≡ 0 (9)

as a function of z for almost every (a, b); i.e., the subset of (a, b) parameter space where (9) is violated is measure zero
with respect to the standard Lebesgue measure in R2. Note that we drop the p(w1) factor since for the uniform distribution
this is a constant which factors out.

Note that this can be analyzed by considering sections were we fix a and consider the set of b where (9) is violated; if
this set has measure zero, then the overall set of cartesian pairs (a, b) which violate (9) has measure zero.

Correspondingly, fix any a, and consider a particular b̄ where gb̄a(z) ≡ 0 as a function over z. We expand the L1 norm in
(9) as

gba(z) =

∫ ∣∣∣∣
d

dλ

(∫ b

a

h(z, w1)dw1

)∣∣∣∣dλ, (10)

using the interventional absolute continuity assumption to invoke the Radon-Nikodym derivative on our signed measure over
oo1 with respect to the standard Lebesgue measure λ. Note that since gb̄a(z) ≡ 0, we have that

d

dλ

(∫ b

a

h(z, w1)dw1

)
= 0 (11)

almost everywhere as a density function over R. We now differentiate both sides of (10) with respect to b at b̄. Due to the
absolute value in (10), we must take care to differentiate from above and below and show both these cases are nonzero. As
they follow similarly, we show the case for above:

d

db

∣∣∣∣
b̄+
gba(z) =

d

db

∣∣∣∣
b̄+

∫ ∣∣∣∣
d

dλ

(∫ b

a

h(z, w1)dw1

)∣∣∣∣dλ (12)

=

∫
d

db

∣∣∣∣
b̄+

∣∣∣∣
d

dλ

(∫ b

a

h(z, w1)dw1

)∣∣∣∣dλ (13)

=

∫ ∣∣∣∣
d

dλ

(
d

db

∣∣∣∣
b̄+

∫ b

a

h(z, w1)dw1

)∣∣∣∣dλ (14)

=

∫ ∣∣∣∣
d

dλ
h(z, b̄)

∣∣∣∣dλ (15)

=
∥∥∥h(z, b̄)

∥∥∥
1

(16)

6≡ 0, (as a function over z) (17)

where (13) follows from boundedness of the Radon-Nikodym derivative of h(z, b̄), (14) follows from absolute value properties
and (11), (15) follows from distributional continuity, and (17) follows from (8).



Proceeding similarly, we can show that both

d

db

∣∣∣∣
b̄+
gba(z) 6≡ 0 and

d

db

∣∣∣∣
b̄−
gba(z) 6≡ 0.

It is then immediate that there exists a ball B(b̄, εb̄) such that gba(z) 6≡ 0 for all b ∈ B(b̄, εb̄)\ b̄. Applying Lemma 5 concludes
that for a fixed a, the set of b for which (9) is violated is measure zero, and hence by Fubini for almost every uniform
measure U(a, b) on w1, we have that (7) holds for some α, α′. Therefore Ss

1 6⊥⊥ Oo
1 in the interventional distribution on Ss

1.
A similar argument shows that Ss

1 6⊥⊥ Aa
t′ . By absolute continuity of the induced interventional distributions, we now have

that Hoeffding’s independence test is consistent, and hence the dependences are detected with probability 1 as N → ∞.
Therefore Oo

1 99K Aa
t′ , and m̃o evaluates to false (6) as N →∞.

Theorem 2. Let m denote the potential-cause test evaluated by Algorithm 1 on the distribution induced by the non-
interventional system 〈Ms,Gs〉, and let m̃ be the original test on the interventional system 〈M̃s, G̃s〉 where P̃ (s1) has
everywhere-nonzero density on S . Then if mo correctly evaluates to true for a particular o ∈ [dO], then m̃o also evaluates
to true almost surely as the number of trajectories N →∞.

Proof: If mo evaluates to true, then for any s ∈ [dS ], a ∈ [dA], and t′ ∈ [H], we have that either Ss
1 ⊥⊥Ms

Oo
1 or

Ss
1 ⊥⊥Ms

At
′

a, where ⊥⊥Ms
denotes independence in the distribution induced by the non-interventional SCM Ms. It suffices

to show that both these independencies hold in the distribution induced by M̃s. As both arguments follow similarly, we
consider showing that Ss

1 ⊥⊥M̃s
Oo

1 .
As we are given Ss

1 ⊥⊥Ms
Oo

1 , it is immediate by faithfulness that there exists no collider-free path from Ss
1 to Oo

1 in
Gs. Since G̃s is simply Gs with the incoming edges to S1 removed, it holds that there is no collider-free path between Ss

1

and Oo
1 in G̃s. Therefore Ss

1 ⊥⊥M̃s
Oo

1 , and as N →∞ this is correctly detected with probability 1 by the consistency of
Hoeffding’s test.

Proposition 3. Let m̃ and m be as in Theorem 2, and consider a particular observation index o ∈ [dO] such that the only
incoming edge to Oo

1 is W1 → Oo
1 . Then if in Gs there exists the fork Ss

1 ←W1 → Oo
1 for some s ∈ [dS ] and a directed

path from Ss
1 to some Aa

t , with t ∈ [H],a ∈ [dA], m̃o correctly masks the oth observation almost surely as the number of
trajectories N →∞ while mo does not.

Proof: We first show that m does not mask o and take all causal and probabilistic statements to refer to the unintervened
causal model 〈Ms,Gs〉. By faithfulness, the fork Ss

1 ←W1 → Oo
1 in Gs produces a statistical dependence Ss

1 6⊥⊥Ms O
o
1 in

the probability distribution induced byMs. Similarly, the directed path from Ss
1 to Aa

t yields Ss
1 6⊥⊥Ms

Aa
t . By consistency of

Hoeffding’s test, as N →∞ we get that (1,t)Do
s,a evaluates to true almost surely (3) and thus Oo

1 99K Aa
t by (4). Therefore

mo is not masked (6).
We now show that m̃ does mask o and take all causal and probabilistic statements to refer to the intervened causal model

〈M̃s, G̃s〉. Since W1 only has outgoing edges, and the edge from W1 → Ss′

1 is removed in G̃s for every s′ ∈ [dS ], there exists
no path from Ss′

1 to Oo
1 in G̃s, and therefore Ss′

1 ⊥⊥M̃s
Oo

1 in the probability distribution induced by M̃s. As N →∞ this
independence is detected by Hoeffding’s test, and since s′ was arbitrary (1,t′)Do

s′,a′ is false for every s′ ∈ [dS ], a′ ∈ [dA],
and t′ ∈ [H]. Therefore Oo

1 699K Aa′

t′ for any a′ ∈ [dA], t′ ∈ [H], and (6) evaluates to true. Therefore m̃o is masked.



II EXPERIMENTS

We include here essential environment, architecture, and hyperparameter details.

A. Environments

We consider two environments: CartPole and Reacher. Both systems are rendered to 64× 64 RGB images, pictured in
Figure 4.

(a) CartPole (b) Reacher

Fig. 4: Illustrative rollouts of the expert policy on CartPole (a) and Reacher (b). The Reacher run is truncated to 100 time
steps for visualization purposes. Note the nuisance feature in the upper left hand corner of the images.

1) CartPole: The CartPole environment [28] describes a nonlinear dynamic system consisting of four states: the cart position
x, the cart velocity ẋ, the pole angle θ, and the pole angular velocity θ̇. The state vector at time t is St := (xt, ẋt, θt, θ̇t).
The agent action is a continuous horizontal force acting on the cart, bounded symmetrically in the range [−25, 25]. The
length of the pole is 1 meter, with the masses of the cart and the pole set to 1 and 0.1 kilograms, respectively. We specify the
gravitational acceleration constant as g = 9.8m/s2. The system is then discretized with ∆t = 0.05 for 100 time steps using
the forward Euler method, with the standard CartPole dynamics equations adapted from OpenAI Gym [27]. We minimize
cumulative stepwise quadratic form loss to the upright target state Starget = (0, 0, 0, 0), with an additional quadratic control
cost.

To each frame, we add a 15× 15 square nuisance feature at the top-left corner of each image. The color of the square
interpolates linearly between green and red, depending on the action (cart force) from the previous time step. At the initial
time step t = 1 there is no previous action, and thus we use a random number drawn from Unif(−25, 25) to generate the
square.

We generate 5, 000 random-policy trajectories for training the β-VAE and 1, 000 expert trajectories for imitation learning.
Random-policy trajectories are terminated when the states become out-of-bound, and are thus generally significantly shorter
than the expert trajectories.

2) Reacher: Reacher is also implemented based on the classic OpenAI Gym environment [27]. The system contains six
states: target position x∗, y∗; joint one angle and velocity θ1, θ̇1; and joint two angle and velocity θ2, θ̇2. The target positions
x∗, y∗ is fixed over the course of one trajectory to a random point in the reachable area. Both links have mass 1 kilogram
and length 0.5 meters. Agents specify torques at both joints, bounded in the range [−2, 2]. The objective penalizes squared
distance of the end effector from (x∗, y∗)—visualized as a black dot—at each time step, along with a quadratic control cost.
We simulate with a time step ∆t = 0.05 seconds for 200 time steps.

For Reacher, we demonstrate that our method can eliminate a visually different type of confounding than the colored
square in the CartPole experiment. The considered confounder is a red dot in the upper-left corner of the image that
moves translationally according to the agent action in the previous time step. Specifically, the horizontal position is linearly
interpolated according to the first joint torque, and the vertical position is linearly interpolated according to the second joint
torque. Similarly to CartPole, we choose a random previous action for the first time step.

We generate 2, 000 random-policy trajectories for training the β-VAE and 2, 000 expert trajectories for imitation learning.



B. VAE training

We train a standard β-VAE [29] as implemented by [30]. We choose a latent space dimension of 3 for CartPole and 12 for
Reacher, although we note that larger choices for the latent space dimension yield similar results. We train for 150 epochs
at a learning rate of 0.0005 on Reacher and 100 epochs at a learning rate of 0.005 on CartPole. Both use an exponential
learning rate scheduler with decay factor 0.95. Our batch size is 256 for Reacher and 64 for CartPole. Finally, we choose
the disentaglement factor β = 100 for CartPole and β = 1000 for Reacher.

C. Behavior cloning training

For Reacher, we use a standard pre-activation ResNet-18 [31]; for the simpler CartPole environment, a simple ConvNet
with 3× 3 convolutions and channel sizes [32, 64, 128, 256, 512] suffices (this architecture resembles the VAE encoder). Both
architectures are trained with the Adam optimizer [32] at an initial learning rate of 0.001 and exponential learning rate
decay with factor 0.96. We use a batch size of 256 and evaluate the performance of the agent with 25 validation rollouts
every 10 epochs. As a single image of the environment cannot convey higher-order state information such as velocity, we
input the previous two images into our policies—i.e., L = 2 in (1). Thus, we make the necessary architectural change to
the underlying models of setting the number of input channels to 6. Since the first time step does not have an associated
previous image, we use a blank image as a surrogate.
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